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ABSTRACT 
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on automatic realizability. 
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Introduction 

Let p > 2 be a prime, and suppose that  K/F is a cyclic field extension of degree 

p. In this paper we consider Galois embedding problems involving Kummer 

extensions of K of degree pn that  are Galois over F,  and we establish new 

automatic realizability results, whereby the solvability of one Galois embedding 

problem implies the solvability of another. (See e.g. [GSS, Section 5] for some 

automatic realizations of 2-groups as Galois groups.) We restrict ourselves to 

the case p > 2 because the case p = 2 is quite simple and does not lead to new 

results. 

We focus particularly on the case when F contains a primitive pth root of 

unity. In fact, this paper is a continuation of [MS] wherein, under this hypoth- 

esis, we classified Fp[Gal(K/F)]-modules Kx/K ×p using arithmetic invariants 

attached to K/F, and the investigations there were motivated by the embedding 

problems solved in this paper. When F is not of this type, we employ a descent 

argument in the case cha rF  ¢ p and Witt 's  Theorem in the case cha rF  = p to 

extend our results to arbitrary fields. 

When F contains a primitive pth root of unity, we additionally provide explicit 

solutions of some Galois embedding problems, and we show that  these formulas 

are natural and quite transparent consequences of our method. For most of 

these embedding problems, explicit solutions were not previously known. For 

others, such as the example of Section 1, our methods yield an explanation of 

explicit solutions determined previously via ad hoe methods. 

In Section 1 we present a motivating example and our Main Theorem on 

automatic realizability and explicit solution. In Section 2 we introduce notation 

and results in preparation for Section 3, where we give conditions and explicit 

solutions for a class of embedding problems under the hypothesis that  a primitive 

pth root of unity lies in the base field. In Section 4 we use a descent argument 

and Witt 's  Theorem to establish equivalent conditions for embedding problems 

over all fields, and in Section 5 we prove our Main Theorem. Although this paper 

uses ideas and results developed in [MS] and in [W], we decided to make our 

paper largely self-contained, and hence we make minimal references to results 

in [MS] and [W]. 

1. Example  and Main Theorem 

A simple example serves as a motivating introduction to Galois embedding 

problems of the type we will consider. Assume that  F contains a primitive pth 

root of unity ~p and K = F(~/a)  is a cyclic extension of degree p, and consider 
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Heisenberg's group E, a noncommutative group of order p3 and exponent p. 

These conditions determine E up to isomorphism. The center of E is cyclic of 

order p, and we have the following short exact sequence: 

(1) 1 --+ Z/pZ --+ E -~ Z/pZ x Z/pZ ~ 1. 

Now let L/K be an extension Galois over F such that  Gal(L/F) ~- Z/pZxZ/pZ. 
Then the exact sequence naturally gives rise to a Galois embedding problem, 

asking whether L embeds in a Galois extension L/F with group E and such 

that  the surjection in the exact sequence is the surjection of Galois theory. 

The obstruction to the solvability of this embedding problem may be com- 

puted as follows. Assume that  K = F(Qr~) is contained in L. Fix a primitive 

root ~p. By Kummer theory there exist elements a, r 6 Gal(L/F) and b 6 F x 

such that  ~ r ~ - i  = ~p : ~/DT-1 and { / ~ - I  : 1 = {/-~-1. Then the lifts of 

a and 7- in E generate E. It is well-known that  the Galois embedding problem 

admits a solution if and only if b 6 N(K×), where N denotes the norm map 

from K to F. (See, for instance, [JLY, page 161].) 

Moreover, if we suppose that  w 6 K satisfies N(w) = b, then it has been 

observed in [Ma, Cor. p. 523 & Thin. 3(A)] (see also [JLY, page 161]) that  

all field extensions L/F solving the Galois embedding problem may be written 

L = L ( ~ - a ) ,  where f 6 F x and a = c d p - l o ( w )  p-2  " . .  o 'p-2(w) .  

In our Main Theorem we generalize and motivate both the condition on solv- 

ability and the form of the solution. The condition implies that  a new automatic 

realizability result holds for fields containing ~p, and we extend the automatic 

realizability result to all fields F.  Further generalizations and explicit solutions 

appear in Theorems 2, 3, and 4. 

Observe that  in the example above L and L are Kummer extensions of K of 

pth-power degree that  are Galois over F ,  and the Galois groups Gal(L/K) and 

Ga l (L /K)  are naturally acted upon by Ga l (K/F) .  The appropriate context for 

our results turns out to be Kummer extensions L of K such that  Gal(L/K) is 

an indecomposable Fp[Gal(K/F)]-module; as we show later in Proposition 2, 

any Kummer extension of K of degree pn that  is Galois over F decomposes into 

a compositum of extensions L/F of this type. 

Let F be an arbitrary field, and suppose that  K/F is a cyclic extension with 
p--1 

Galois group G = GaI(K/F) ~ Z/pZ, with generator a. Let A = ~ j = 0  ]~P Tj 
be a free Fp [G]-module on the generator T, where a acts by multiplication by T. 

Let Ai be the Fp[G]-submodule generated by (7-- 1) i. (See Section 2 for details.) 
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Finally let Ei, 1 < i < p, denote the following Galois embedding problem: 

E~: 1 -+ A1/Ai -+ (A/Ai)  )4 G ~ (A/A1))~ a = Gal(L/F)  -+ 1. 

Observe that A/A1 ~ Fp, a trivial Fp [G]-module; hence 

(A/A1))~ G ~- Z / p Z  x Z /pZ.  

We also assume that the projection of (A/A1))~ G = Gal(L/F)  onto G 

coincides with the restriction map Gal (L /F)  ~ G = Ga l (K/F) .  Assume 

now that char F ~ p. Then [L : F] and [F(~p) : F] are coprime. Therefore 

Gal(L/F)  is naturally isomorphic to Gal(L(~p)/F(~p)). After identifying these 

two Galois groups we set F(~p, ~/-b) to be the fixed field of 1 x G in L(~p). (Here 

b is a suitable element in F(~p) × .) 

Further observe that  in the case i = 2, (A/A2))~ G "~ E. Hence £2 is precisely 

the embedding problem in equation (1) above. 

In the following theorem we consider the embedding problems Ci where i = 

2 , . . . , p .  We prove: 

THEOREM 1 (Main Theorem): 

(A) Let F be an arbitrary field. Then the following are equivalent: 

(1) Some Ei is solvable. 

(2) Each £i is solvable. 

Consequently, i f  (A/A2) >4 G occurs as a Galois group over F, then (A/Ai)  >4 G 

occurs as well, for all 2 < i < p. 

(B) Now assume that char F ~ p. Then (1) and (2) are also equivalent to 

(3) b E NK(~v)/F(~p)(K(~p)×). 

(C) Now assume further that ~p E F. Suppose that (1)-(3) hold, and let 

w E K × satisfy N(w) = b. Suppose i > 2. Then a solution to Ei is given 

by 
t = K(¢fw(a-1)  p-i, ~/w(a -1 )P- i+ ' , . . . ,  ~oJ((7-1)P-2), 

f E F x • I f i  = 2 then a solution to 82 is given by 

---- K(  ¢f02(a-1)`p-2) ). L 

Moreover, all solutions of $i arise in this way. 

In particular, we have the following automatic realization of Galois groups: 

if E = (A/A2) >4 G is a Ga lo i s  g r o u p  over  F ,  Fv[G ] )~ G is a Ga lo i s  g r o u p  

over  F.  
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The explicit construction result in the theorem says that  in the case ~p E F,  

solutions of £i are parameterized by w with N(w) = b and f E F ×. Note that  

in Fp [G] we have the identity 

( a -  1) p-2 = ( p -  1) + ( p -  2)a + . . .  + a p-2, 

so the construction of ], in the theorem above is equivalent to that  of [JLY, 

page 161] in the case i = 2. 

2. Preliminaries 

In this Section and Section 3 we assume that  F is a field containing a primitive 

pth root of unity (p, K = F(t/rd), and G = Gal(K/F) ~- Z/pZ. We let a denote 

the generator of G such that  ~¢rda-1 = ~p. Since a - 1 is used frequently, we use 

the abbreviation p := a - 1. All modules and Galois extensions will be acted 

upon on the left by their respective groups, even though we will use exponential 

notation to denote Galois action on fields. We denote by F × the multiplicative 

group of a field F,  and we write N = NK/F for the norm map from K to F. 

For a subset S of an Fp-module V we denote by (S) the ]Fp-span of S in V. 

2.1. Fp[G]-MODULES. Let A = ~ - 1  FpTJ be a free Fp[G]-module on the 

generator T, where a acts by multiplication by v. There are p quotient modules 

A/Ai , i  = 1 , . . . , p  of A where for i < p, 

A~ = ((T -- 1) ~, (V -- 1)i+1, . . . ,  (T -- 1)P--I), and Ap = {0}. 

These quotients are all cyclic and together form a complete set of indecompos- 

able Fp [G]-modules. Each A/Ai  is of dimension i as a vector space over Fp. We 

call this dimension the leng th ,  and denote the length of a cyclic Fp [G]-module 

M by /(M), because we have the following criterion for l(M), where M is a 

cyclic Fp[G]-module generated by m: l(M) = i such that  pim = O, pi-lrn ~ O. 
Moreover, such a cyclic module M of length I contains precisely one submodule 

of each length 1 _< j _< l: Mi = {pt-Jm,. . .  ,pl-lm).  

For each i E {1 , . . . , p}  we pick a basis {1,T-- 1,...,(TE-T-1) i-1} of A/Ai 
consisting of images of 1 , T -  1 , . . . ,  ( 7 -  1) i-1. We define an Fp-linear map 

)~: A/Ai ---+ Fp by A(f0 + fl(TL-T-1) + " "  + f i - i (T : - [ -  1) i-1) = f i-1,  where 

fk E Fp, k = 0 , . . . ,  i - 1. Observe that  ker(A) contains no nonzero ideal of A/Ai. 
Then B(a, b) := )~(ab) for each a, b E A/Ai defines a nonsingular, symmetric 

bilinear form B: A/Ai × A/Ai ) Fp. Thus A/Ai is a symmetric algebra. (See 

[La, page 442].) Further we have B(a ~, b ~-1 ) = B(a, b) for each a, b E A/Ai and 
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our bilinear form B induces a G-equivariant isomorphism between A/Ai  and its 

dual. 

2.2. GROUPS. In this section we classify the groups of interest in this paper 

and the surjections among them. For e E Fp, let Bi,e be the group extension of 

A/A~ by G with (TP : e (T  -- 1) i - 1 .  Here 6 is a lift in Bi,e of a E G. Note that 

for e = O, B~,o = (A/Ai) >~ G. First we consider the equivalence classes of these 

groups. 

LEMMA 1 (see [W, Theorem 2]): 

(1) If  H is a group with a normal subgroup isomorphic to A/Ai  as a G-module, 

with quotient group G, then H = Bi,e for some e. 

(2) For fixed 1 <_ i < p, all Bi,~, e ~ O, are isomorphic, and these groups are 

not isomorphic to B~,o = (A/Ai) )~ G. 
(3) For i = p, all Bi,e are isomorphic to Bp,o ~- Fp [G] )4 G. 

The Galois embedding problems in this paper consist of embedding an ex- 

tension L / F  with group By,e, in an extension with strictly larger group Bi,e. 
We are interested in all surjections Bi,e ~ Bj,e, for which the kernel lies in 

A/Ai  C Bi,e and which are induced by the projection of Bi,~ on its quotient. 

We call these G-surjections. 

LEMMA 2: The G-surjections in the set of groups {Bi,e}i>_l are precisely 

B ~ , ~ B j , 0 ,  i > j _ > l ,  e E F p ,  withkernelAj /Ai .  

Proof'. Considering the dimensions of A/Ai  and A/Aj ,  if Bi,~ ~ Bj,~, is a G- 

surjection then i > j .  Now a surjection of G-modules A/Ai  to A/Aj  must have 

as kernel an Fp [G]-submodule of A/Ai  of Fp-rank i - j .  But since A/Ai  is cyclic, 

there is precisely one such submodule, namely Aj/A~. Hence (k-E-T- 1) k lies in the 

kernel for all j _< k < i. In particular, the kernel must contain e ( T -  1) i-1, 

which is 5 p in Bi,e. Therefore ~ E Bi,e is sent to some lift 5 E Bj,~, of a E G 

and hence (TP : 1 in Bj,e,, or e t = 0. | 

We list some characteristics of the groups Bi,~. Each Bi,e has order pi+l, 

nilpotent index i, and rank (the smallest number of generators) 2. The exponent 

of Bi,o is p, and the exponent of Bi,~, e ¢ 0 is p2. The Frattini subgroup ¢(Bi,e) 
of Bi,e is A1/Ai ~- (Z/pZ)  i-1. Finally, we have presentations 

B~,o (a, i -1.  = {Tj}j=o. a P = T y = [ a ,  r i _ , ] = l ;  f o r j < i - - 1 ,  [(T, Tj]=Tj4-1 ) 

and, for e ~ 0 mod p, 

f f  i - 1 .  : T  e "T  p [O' ,Ti_l ] - -~X ; f o r j < i - 1 ,  [Cr, T j] - - - -T jq-1) .  B i , e  = ( ' {Tj}j-=O" 5rP i - i ,  j = 
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2.3. EXTENSIONS AND SUBMODULES, ~p E t7'. Now let J denote the Fp[G]- 

module J := K × / K  ×p. We denote elements of J by [I,], "y E K × . Let Ji be the 
kernel of the endomorphism (a - 1) i and let M r be the cyclic submodule of J 

generated by ['y]. Then [3'] E Ji if and only if l(M~) <_ i. 

We denote by M ++ LM the Kummer correspondence over K of subspaces M 

of the Fp-vector space J and abelian exponent p extensions LM of K: 

M = (L~  p M K × ) / K  ×p ~ LM = K(~/-~: ['y] E M). 

Set C = Gal(LM/K).  Then M and C are dual G-modules and the canonical 

duality (m,c) := c(~/-m)/~/m of M and C is G-equivariant. (See [W, pages 134 

and 135].) The following proposition rephrases the results in [W, page 135] in 

our notation. 

PROPOSITION 1: Under the Kummer correspondence above, 

(1) LM is Galois over F if and only if M is an Fp[G]-submodule of J. 

(2) The following are equivalent: 

(a) LM is the Galois closure, over F, of K(  ~f~) for some 7 E K×; 

(b) M = M r f o r s o m e T E  K ×; 

(c) Gal(LM/K) ~ A/Ai,  as G-modules, for some i; 

(d) Gal(LM/F) ~ Bi,e, as G-extensions, for some i and e. 

If  these conditions hold, then i = l(M) and 

L M = K ( ¢//-~, ~¢~, . . . , ~//.~p,-1). 

Proof: Because LM is Galois if and only if each automorphism of K extends 

to an automorphism of LM, item (1) and (a)¢:~(b) follow. That  (c)¢=~(d) follows 

from Lemma 1. 

Suppose (b) holds. Then M ~- A/Ai  for some i E {1, . . .  ,p} and Gal(LM/K) 

is a G-equivariant dual of M. Since M is a G-equivariant self-dual module, we 

see that Gal(LM/K) and A/Ai  are G-isomorphic and (c) follows. 

Suppose now that (c) holds. Then again using the G-equivariant self-duality 

of A/Ai and Kummer theory, we see that M must be a cyclic module M r for 

some "y E K×.  Hence (b) follows. 

The presentation of LM follows from the fact that a cyclic Fp [G]-module M 

generated by m is generated over Fp by {pk(m)}~(_Mo)-l. I 

We can now prove 
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PROPOSITION 2: Let L / K  be a finite Kummer extension of pth-power degree 

which is Galois over F. Then L is a compositum of tinitely many Galois closures, 

over F, of extensions of the form L.~ = K (~/-~), 7 E K x. 

Proo~ The extension L / K  corresponds to an Fp[G]-submodule M of J.  Since 

M is finite, it is decomposable into a direct sum of finitely many indecompos- 

able Fp [G]-modules My. Each indecomposable Fp [G]-module Mj is isomorphic 

to some A/Ai and is hence cyclic. By Proposition 1 (2), these submodules cor- 

respond to Galois closures over F of extensions L ,  = K(~r~). The submodule 

of J generated by each of the indecomposables Mj then corresponds to the 

compositum of the L~, and we are done. I 

2.4. THE INDEX. The following homomorphism appears in a somewhat 

different form in [W, Theorem 3]: 

Definition: The index  e([7]) E Fp for [7] E Jp- i  is defined by 

The index is well-defined, as follows. First, since 

(2) 1 + a  + - . -  + a p-1 = ( a -  1) p-i  = pp-i  

in F~ [G], [N(7)] = [7] p'-I , which is the trivial class [1] by the assumption [7] E 

Jp-1, and as a result ~ lies in K and is acted upon by o. Observe further 

that  e([7]) depends neither on the representative 7 of [7] nor on the particular 

pth root of N(7).  Also the index function e above is a group homomorphism 

from Jp-1 to Fp. Therefore the restriction of e to any M~ is either trivial or 

surjective. 

We show that the index is trivial for any [7] in the image of p: 

~p([~]P) - ( ~ ) P  -- (~/1)P -- 1, 

or e([7] p) = O. 

LEMMA 3 (see [W, Theorem 2]): Let [7] E J and M = M r. 

(1) I l l (M)  < p and e = e([7]) then Gal(LM/F) ~ Bi,e. 

(2) I l l (M)  = p then Gal(LM/F) -~ Bv,o. 

Proof: The second item follows from Proposition 1 and Lemma 1. The fact 

that  Gal(LM/F) "~ Bi,e for some e E Fp follows in the same manner. Therefore 

it remains only to show that Gal(LM/F) ~ Bi,e(D]) if l(M) < p. 
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Let ~ denote a pullback of a E G to Gal(LM/F). Then 5P lies in 

Z(Gal(LM/F)) M Gal(LM/K). (Here Z(Gal(LM/F)) means the center of 

Gal(LM/F).) Recall that using Kummer theory and the G-equivariant self- 

duality of A/A~ we may identify Gal(LM/K) with A/Ai. Adopting this 

identification we pick a basis {1, T -  1 , . . . ,  (TL--T- 1) i - i  } of the Gal(LM/F) dual 

with {[3'](°-1)~-1,..., [3,] ~-1, [3`]} with respect to Kummer pairing. Under our 

identification, ~P lies in the G-invariant submodule of A/Ai, which is ( (7~-1)i- i }. 

Observe that  (TZ--1- 1) i - i  sends ev/~ to ~p ~r~. If #P = e(7-Z-T- 1) i-1 then 

= 

Therefore 

ff-~(~-l)  = {/~(1+~+...+~,,-')(~-1) = (~NK/F(3`))(~-~) = ~(h]) .  I 

We characterize elements of J fixed by a and of trivial index with the following 

LEMMA 4: If  [3'] E Ji  and e([3`]) = 0 then there exists f E F x such that 

[7]  = [ I ] ,  

Proof: By [MS, Remark 2], we have the following short exact sequence: 

0--+ ([a]) i~FX/FXp ~)J1 N~([a]), 

where {[a]} is the subgroup of F x / F  xp generated by In] E F x / F  xp, i is the 

inclusion map, ~ is the natural homomorphism induced by the inclusion map 

F x -4 K x, and N is the map induced by the norm map from K to F.  Now 

e([3']) = 0 implies that [3'] is in the kernel of the surjection N above, and we are 

done. I 

We will also need a lemma on the smallest lengths of cyclic submodules of J 

generated by an element [3'] with nontrivial index. Let T = 1 if ~p E N ( K  x) 

and T = 0 otherwise. In the proof of the next lemma we refer to [A] only for 

the sake of convenience. One can use basic Kummer theory instead. 

LEMMA 5: 

(1) I f T  = 1 then there exists ~ E K × such that [(~] E Ji  and e([5]) ¢ 0. These 
are precisely the 6 such that K ( {/~) / F is a cyclic extension of degree p2. 

(2) I f T  = 0 then [e¢/~ E J2 \ J1, e([ecra]) ~ 0, and e([3']) = 0 for a11 [3'] E Ji .  

Proof'. By [A, Theorem 3], T = 1 if and only if K / F  embeds in an extension 

L = K(~¢c~) Galois over F with group Z/p2Z ~ Bi,e, e ¢ 0. By Proposition 1 
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and Lemma 3, then, T = 1 if and only if there exists [5] E J1 with e([~]) # 0. 

This proves the first statement. 

Assume now that  T = 0. We have [~r~] e J2, since [~/'d] p = [~p] E J1, and 

we calculate e([~-]) = 1. Since T = 0, [(p] # [1] in J1 and therefore [~/-a] ¢ J1. 

Now consider any [3'] E J~. Then L = K(~cr~) is Galois over F and since T = 0 

we see from [A, Theorem 3] that  Gal (L /F)  is B1,0 ~ Z / p Z  x Z / p Z .  Hence 

e([3']) = 0 and the second statement is proved. I 

Finally, we introduce a variant of [MS, Lemma 1] for submodules generated 

by elements with trivial index. This is our key lemma: 

LEMMA 6: Let [3'] E J. Suppose that 2 <_ l(M.r) < p and e([3']) = 0. 

Then there exists [3"] E J such that  

(1) l(M.y,) = l(M.~) + 1. 

(2) = 

(3) The fixed elements Mr unde  G coincide with 

(4) I f l (M~)  < p - 1 then e([3"]) is defined and has a value of O. 

Proof: Let c = N% Since l(M~) < V, we have [c] = [3']P~-' = [1]. Hence 

c E F × Cl K ×p. In fact, c = aSf  p for some f E F and s C Z, as follows. Since 

c E K ×p, F(~/c) C K.  The Kummer extension F(~¢~) is either F or K;  if the 

former, then c E F ×p, while if the latter, then by Kummer theory c also has the 

desired form. 

Thus N'y = aSf  p for some s and f .  But e([3']) = 0, so p divides s and we see 

that  N3" = fP for some f E F × . Since N(~/ / f )  = 1, by Hilbert's Theorem 90 

there exists a w E K × such that  02 Cr-1 = 3 ' / f .  Then l(M~) = l(M.r) + 1. 

If l(M~) < p - 1 then let t = e([w]) and set 3" = w/(at/p); otherwise let t = 0 

and set 7' = w. 

We compute [3"]P = [~pt~//f] and, since ~p, f E F X, [3',]p2 = [3']p, which is 

nontrivial since 2 _< l(M.r). Hence (1) and (2) follow. 

Now if l(M.y) < p - 1 then l(M.r, ) = l(M.r) + 1 < p and so 3" E Jp-1. Then 

e([3"]) = e([w]) - t = 0. Therefore (4) is valid. 

Finally observe that  M ~  is generated by [3']pz(,~)-i as well as [3',]p,M ,>-1, 

which in turn generates M~.  Hence M ~  = M~ and therefore (3) follows from 

(2).  , ,  
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3. E m b e d d i n g  p rob lem condi t ions and solutions, ~p E F 

We consider all embedding problems involving groups Bi,e, based on the G- 

surjections determined in Lemma 2, defining the following embedding problems 

f o r i > j > _  1: 

Ei,j(L): 1 --+ A j / A i  -4 Bi,0 --+ (A/Aj )  ~ G = Gal(L/F)  -~ 1, 

and, for any e # 0, 

£~,j(L): 1 -4 A j / A i  -+ Bi,e --+ (A /Aj )  ~ G = Gal(L/F)  -~ 1. 

In each case we ask if there exists a Galois extension f . /F  containing L such that 

Gal(L/F) ~ Bi,o or Gal(f./F) ~ Bi,e, and under the identification of Gal(L/F) 

with Bi,0 (or Bi,e), the surjection Gal(f./F) ~ Gal(L/F) is identical to the 

surjection above. 
Since Bp,o ~ Bp,e as G-extensions for all e, the embedding problems Cp,i(L) 

and Ep,i(L ) are identical. Moreover, note Ci,I(L) = $~(L). (For the discussion 

of Ei see the text before Theorem 1 in the Introduction.) 

For each of these problems, by Proposition 1, L is the Galois closure of K(f/~) 

for some 7 E K × . Hence under the Kummer correspondence My e+ L, and by 

Proposition 1, l(M~) = j .  

THEOREM 2: Suppose that ~p E F. Let p > i > j >_ 1 and L be the Galois 

closure of K(~-~) over F. 

Then Ei,j(L) is solvable K and only//[7] = [w] pp-j for some w E K × . 

I f  so, then a solution L to C~,j(L), where i > j + 1, is given by 

f E F  x . 

In the case when i = j + 1 a solution L to £j+l,j is given by f. = L ( ~ ) ,  

f E F  ×. 

Moreover, all solutions to Ei,j(L) arise in this way if  one allows w to vary over 

all elements of K × with [w] pp-j = [7]. 

Proof: By Proposition 1, there exists a field L with Gal(L]F) ~ Bi,e for some 

i and e if and only if there exists a cyclic submodule M~ of J of length i, and 

in this case we have M~ +4 L under the Kummer correspondence. 

Furthermore, by Lemma 3, if i < p then Gal(L/F) ~ B~,~, where e = e(M ), 

and if i = p then Gal(f./F) ~ Bp,o. Hence if i < p then Ei,j(L) is solvable if 
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and only if there exists/3 E K × with e([/3]) = 0, l(M~) = i, and M~ D M~. If 

i = p then Ep,j is solvable if and only if there exists/3 E K × with l(M~) = p 

and MZ D M~. 
p--i 

Now suppose that  [7] = [w] pp-j for some w E K × . Then let/3 = w p . Since 

l(M.r) = j and ['y] = [/3]pi-j, l(M~) = i. Now if i = p then the condition of 

the previous paragraph is satisfied. If i < p then/3 is in the image of the endo- 

morphism p, therefore e([/3]) = 0 and the condition of the previous paragraph 

is satisfied. 

Going the other way, suppose that  there exists /3 E K × with l(M~) = i, 
M~ D M~, and, if i < p, e (M ) = 0. Since M~ is the unique Fp[G]-submodule 

of M~ of length j ,  M~ = M y - j .  Further, since the linear map M~ --+ M r 

defined by [a] ~ [a] p'-J is surjective, there is a [/3'] E M~ such that  we have 

[/3']P'-J = [7]. Moreover, l(M~,) = l(M~) so M~, = M~. In the case of i < p, 

because e is trivial on [/3], then e is trivial on M~ and hence e([3']) = 0. 

If i = p then let w =/31. Otherwise, by repeated application of Lemma 6, we 

may find an w E K x such that  [w] p~-~+I = [/~']P. Then [w] p~-i = [/3,]p,-i = [~/]. 

We now treat the explicit construction of the solution fields. Let M~ be 

an Fp [G]-module corresponding to a solution field to the embedding problem 

Ci,j(L). Let/3'  and w be defined as above. Note that  [w] Rp-~+~ = [/31]p~ for all 

y _> 1. Hence (~ = wPP-~//3 ' satisfies [(~]P = [1]. Now e([5]) = 0, so by Lemma 4, 

[5] = [f] for some f E F x. If we have a solution L to $i,j(L) with MZ ~ L, 

then L = L(~/'0 : [0] • MZ), or equivalently 

L: L(Cz, 

by Proposition 1. Since M~, = MZ, [w] p'-'+~ = [/3']'~ for all y _> 1, and 

[/3'] = [w p~-' If] ,  we have 

L: ,+1 , ,  

in the case when i > j + 1 and L = L ( ~ / f - l w  p'-~) if i = j + 1 again by 

Proposition 1. 

Finally, observe that  if we have a solution ], to E~,j (L) with M~ ++ L, then 

for each f • F × a module MI~ also corresponds to a solution of $~,j(L). Hence 

in our explicit formula for a solution field ],, any f E F × is eligible. I 

THEOREM 3: Suppose ~p E F. Let p >_ i > j >_ 1 and L be the Galois closure 

of  K (~'~) over F. 
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(1) £~ . . . .  ~,3 (L), i > j + 1 T or j = p 1, is solvable i f  and only i f  [7] [w] p'-j  

for some w E K × • I f  so, then a solution ], to C~,j(L) is given by 

f E F x , where in the case T = 1, a is any element in K x with K(~ / ra ) /F  

cyclic of degree p2, and in the case T = O, a is ~/-d. Furthermore, w ~ = 
cO-~-clp-~-'''~-ci-lpi-I for suitable ck E Z.  

(2) £~+1,j (L), X = 0, is solvable i f  and only i f  [7] = [~ple [w]p P-j for some 

w E K × and e ~ 0 mod p. I f  so, then a solution L to £~,j(L) is given by 

L = L(¢ fae /PwP"-J -~) ,  f E F ×. 

Moreover, all solutions to £~,) arise in the way described above. 

Note that  the two parts of the theorem overlap when i = p, j = p - 1, and 

T = O .  

Proof'. We begin in the same manner as the previous proof: if i < p then 

E~,j(L) is solvable if and only if there exists fl E K x with e (M ) ~ 0, l (M~) = i, 

and MZ D My. If i = p then gp,j is solvable if and only if there exists ~ E K x 

with l (M~) = p and M~ D My. 

We first treat the conditions on [7] that  are equivalent to solvability. Then 

we consider the explicit presentations of the solution fields. 

In the case i = p, since E~,j = Ep,j, the condition on [7] is the same as the 

condition on [7] for the solvability of 3p,j determined in the previous theorem. 

This gives us the condition in part 1. Now if additionally j = p - 1, consider 

the condition of part 2: [7] = [~p]e[w']PP-J = [~p]e[w'] p for e ~ 0 modp.  If 

this condition holds, w = a-e/pw ' satisfies the condition [3'] = [w] pp-j = [w] p of 

part 1. Conversely, if the condition of part 1 holds, set w' = a l / p w  and observe 

that  the condition of part 2 holds with e = 1. 

Now suppose i < p and £~,j (L) is solvable with field ~, such that  MZ +4 L. 

We show that  the specified conditions on [7] must hold. 

If i > j + 1, then MZ~ e+ L, where, by Lemma 3, f, is a solution to Ci-I , j (L) .  

Then by the previous theorem the condition [7] = [w] pp-~ is satisfied. 

I f i = j + l  a n d T  = 1, t hen l e t  [a] E J l w i t h e ( [ a ] )  ~ 0 .  (SeeLemmah .  

Observe that  g ( f / r a ) / F  is cyclic of degree/>2.) S ince / j+l , j  (L) is solvable there 

exists M~ D M.y,l(M~) = j + 1 and e(M ) ¢ O. Set/~' = ~e([~])/ae([~]). Then 

e([/~']) = O. Since a E J1 we have M(~,)p = M~. = M. r By Proposition 1 
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and Lemma 3, Mf~, ~ / , ,  where L is a solution to gj+l, j(L).  By the previous 

theorem, the condition [7] = [w] pp-j is satisfied. 

Now consider the case i = j + 1 and T = 0. By choosing another generator [/3] 

of MZ if necessary, we may assume that  [/3]P = [7]. Consider/3' =/3a -e([z])/p. 

Then e([/3']) = 0. Now [a-e([Z])/P] p = [~p~([Z])], so [/3']P = [~p~([Z])7]. Therefore, 

if l(M~;~I~%) is at least 1 there exists a solution to an embedding problem 

corresponding to MZ, and M~-~¢ir, ll r. By the previous theorem, the condition 

[~p]-e([~])[?] = [w]p p-j is satisfied. If [~p-e([Z])7] = [1] then we can set w = 1 and 

again the condition [~p]-e([~])[V] = IT] pp-j is satisfied. 

In all cases, then, we have shown that  if g~,j (L) is solvable, the corresponding 

condition on [7] holds. 

Now suppose that  the condition of part ] holds: [7] = [w] pp-~ for some w. 

Here we include the case i = p. 

If T = 1 then let [a] E J1 with e([a]) ¢ 0. (See Lemma 5.) Consider 

/3 = aw p~-~. I f i  < p, e([w] p~-~) = 0 and hencee([/3]) ¢ 0. Since [a] • Yl, 

l(M~) = l (Mp, , -~)  = l ( M r ) + i -  j = i. Moreover, since [/3]P~-J = [7], M~ D M r 

and we have shown that  g~,j (L) is solvable. In the case when i = p and T = 1 we 

observed above that  gp,j (L) is equivalent with Ep,j(L) and also the solvability 

conditions are the same. Hence by Theorem 2 we see that  gp,j (L) is solvable. 

I f T  = 0 a n d i  > j + l ,  t h en l e t  a = ~/-d. Consider/3 = aw p~'-~. Again if 

i < p then e([w] p'-~) = 0 and hence e([/3]) ~ 0. Since [hi • J2 (see Lemma 5) 

and i > j + 1 ,  l (Mz)  = l ( M  p,,-~) = l(M.y) + i - j = i. Moreover, since 

[/3]P'-J = [7], M~ D M~ and we have shown that g~,j(L) is solvable. (Observe 

that  we employed the condition i < p only to ensure that  e([/3]) ¢ 0 in this case. 

If i = p then e([/3]) plays no role, and therefore we have covered this case in the 

construction above.) 

Now suppose that  the condition of part 2 holds: b] = [~p]e[w] p'-j  for some 

w • K × a n d e  ~ 0 m o d p .  Let /3 = ae/pw p'-~-~. I f j + l  < p t h e n ,  because 

e([w] p'-j-1 ) = 0, we have e (M ) = e ~ 0 mod p. Moreover, [/3]P = [~ ] [~ ] [7 ]  = 

['~], so MZ D M r and we have shown that  Sj+I,j(L) is solvable. Finally, observe 

that  if j + 1 = p we showed at the beginning of our proof that  both embed- 

ding problems g~,p_~ and gp,p-1 are the same, and that  also the conditions in 

Theorem 2 and Theorem 3 for the existence of a solution of this problem are 

equivalent. Hence the existence of a solution in this case follows from Theorem 2. 

Next we shall derive an explicit form of any solution field L of our embedding 

problem. 

Observe that  for any f • F × and Jp-1 D M~ D Mr  ' we have l (Mi~  ) =/ (M~) ,  
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Mf~  D M. r, and e([f3]) = e([/3]). Recall that  in the case T = 1 ,a  is any element 

in K × with K ( ~ ' - ~ ) / F  cyclic of degree p2, and in the case T = 0 , a  is 1:/-~. By 

Proposition 1, then, 

is a solution to the appropriate embedding problem for/3 = cew pp-~ in the case 

i > j + l - T o r j = p - l a n d / 3 = a e / P w  ;'-~ in the case i = j + l ,  T = O, as 

above. 

To show that  every solution field L takes this form, suppose that  M~ ++ L 

is a solution to $~,j (L). Hence M~ D My. We consider first the case of part 1 

when T = 1. If i < p then, by Lemma 3, e (M ) # 0; in this case we let c E Z 

be such that  e([/3e]) = e([a]) and set/3'  = ~3 c so that  e([/3'/a]) = 0. If i = p 

then let /3' = /3. Becausei  > j _> 1 and [a] E Jx, l(M~,/c~) = l(M~,)  = i. 

Observe that  [/3'/a] p = [~c]P, so Mz, /a  D M(z,/c,)o = M~p D My,  because My 

is properly contained in MZ and MZ, is the maximal proper Fp [G]-submodule 

of MZ. Hence Mg,/~ ~ L, for L a solution to &,j (L) .  

By Kummer theory and Theorem 2, 

= ( [ : J - ' ] ,  [ j - , + x ] , . . . ,  [ J - ' l }  

for some f E F x and ~ E K ×. Observe that  hence M¢,/~ = M:~: , -~ .  Because 

[/3'/a] and [fco p"-~] are both F,[Gl-module generators of the same module of 

length i, 
= 

for some ck E F;.  Let f '  = fro and ~'  = co c°+c~p+'''+c'-~p'-~. Then /3'/(x = 

f ' ( w ' )  p ' - '  , or/3' = f '  a (w' )  p~-' . Since Mn, = M~ ++ L, L takes the form 

by Proposition 1. 

The case when T = 0 can be treated as above with slight modifications. First 

in this case instead of [a] E & we take [C/d]. We use our hypothesis i > j + 1 

to make sure as above that  l ( M ~ , / g g )  = l(M~,) .  Next observe that  

M~,/  ga D M(~,/  ga)~  = M ~  D M. r 

as the Fp [G]-submodules of M/~ are linearly ordered by inclusion and l (M~)  - 

l(M.r) _> 2. The rest of the argument for case (1) when T = 0 faithfully follows 

the argument for case (1) when T = 1 as above. 
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In order to show that  every solution field ], in part 2 takes the specified form, 

observe that  Aj/Aj+I is in the center of Bj+l,e. Therefore, since we have one 

solution of the embedding problem C~+1, j of the form L t = L(~ae/PwP È-j-~ ), by 

the well-known theorem on solutions of central embedding problems (see [JLY, 

Lemma A.1.1]), any other solution L of the embedding problem Ej+I, j takes the 

form 

L = L( /fa /pwp f e F ×, 

as required. I 

Remark: Lemma 2 implies tha t  among our embedding problems, only Galois 

extensions L / F  with Gal(L/F) ~- Bj,o may be solved. This result agrees with 

our Theorems 2 and 3, as follows. Suppose that  L is the Galois closure of 

K ( f / ~ ) ,  ~ E K ×, and l(M~) = j. From our solvability conditions we see that  

if L can be embedded in some extension L such that  G a l (L / F )  ~ Bi,e and 

p _> i > j _> 1, e E Fp, then necessarily e([3']) = 0. 

4. A r b i t r a r y  f ields 

4.1. CHARACTERISTIC NOT p. We now suppose that  Ko/Fo is a cyclic exten- 

sion of degree p of fields of characteristic not p. Set F = Fo(~p), K = Ko(~p), 

and s = IF : Fo]. Let e denote a generator of Gal(F/Fo) and a a genera- 

tor of G = Gal(Ko/Fo). Since p and s are relatively prime, Gal(K/Fo) 

Gal(F/Fo) x Gal(Ko/Fo). Therefore we may naturally extend e and a to K,  

and they commute in Gal(K/Fo). Using the extension of a to K,  we write G 

for Gal(K/F) as well. 

Let t E Z such that  e((p) = (pt. Then t is relatively prime to p. Let J~ be the 

t-eigenspace of J = K ×/K Xp under the action of e. Observe that  since e and a 

commute, je is an Fp [G]-subspace of g. By [W, §5, Prop.], we have a Kummer 

correspondence over K0 of subspaces M e of the Fp-vector space Je and abelian 

exponent p extensions L0 of K0: 

M e = ((KLo)  ×p n K × ) / K  ×p 

Lo = maximal p-extension of Ko in LM~ = K(~f~  : [~/] E Me). 

As Waterhouse shows, for M e C J~, e E Gal(K/Ko) has a unique lift ~ to 

G a l ( L / ~ / K o )  of order s, and Lo is the fixed field of ~. 

We first prove a lemma on the decomposition of J: 
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LEMMA 7: J = J~ ~ J~, where J~ is an Fp[G]-submodule of J, and e is trivial 

on jv  n Jr-1. 

Proof'. We adapt an approach to descent from [Sa, page 258]. Let z E Z satisfy 

zst s-1 = 1 mod p, and set 

8 

T = z" E ts-iei-1 e Z[Gal(g/Fo)]. 
i = l  

We calculate that  (t - e ) T  = 0modp,  and hence the image of T on J lies in J~. 

Moreover, on J~, e acts by multiplication by t, and hence T acts as the identity 

on J*. Finally, since e and a commute, T and I - T commute with a. Hence J 

decomposes into a direct sum J~ ~ J ' ,  with associated projections T and I - T. 

Let a E F x satisfy K = F(~/-~), and consider [a]F E F X / F  xp. By [W, §5, 

Prop.], e([a]F) = [a]~. Suppose 7 E K × satisfies [7] E Jp-1. Then, since e and 

a commute, 

[N(e(7))]F = [e(Y(7))]F = e([N(7)]F) = [g(7)]~. 

Hence e(e([7])) = t-e(M), and we then calculate that  e([TT]) = e([7]). Therefore 

e ( ( I  - T ) b ] )  = o. I 

Now we establish that  the Galois structure of LM, /F  is equivalent to that  of 

Lo/ Fo. 

PROPOSITION 3: Under the Kummer correspondence above, Lo is Galois over 
Fo if and only if M ~ is an Fp [G]-submodule of J~. In this case the base ex- 

tension Fo -~ F induces a natural isomorphism of G-extensions Gal(Lo/ Fo) ~- 

Gal(L/F). 

Proof'. If Lo/Fo is Galois, then LM~ = LoK/F  is Galois as well, and by 

Proposition 1 (1), L ~ is an Fp [G]-submodule of J. 

Going the other way, suppose that  M ¢ is an Fp[G]-submodule of J~. By 

the correspondence, LM~/Ko is Galois. Then M ~ is also an Fp[Gal(K/Fo)]- 

submodule of J~ and therefore LM,/Fo is Galois. 

Now since Ko/Fo is Galois, every automorphism of LM~ sends K0 to Ko. 

Moreover, since Lo is the unique maximal p-extension of K0 in LM~, every 

automorphism of LM~ sends Lo to Lo. Therefore Lo/Fo is Galois. 

Finally, we show that  base field extension F0 -~ F induces a natural isomor- 

phism of G-extensions Gal(Lo/Fo) --+ Gal(L/F). Now FIFo and Lo/Fo are of 

relatively prime degrees, and hence Gal(LoF/Fo) ~- Gal(F/Fo) x Gal(Lo/Fo). 
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Moreover, we deduce that  we have the natural isomorphism G = Gal(Ko/Fo) 
Gal(K/F), and that  the natural isomorphism Gal(L/F) ~ Gal(Lo/Fo) is a 

G-extension isomorphism. | 

Now we make the connection between embedding problems over F0 and em- 

bedding problems over F.  For p > i > j _> 1, denote by gi,j(Lo) and g~,j(Lo) 

the embedding problems 

gi,j(Lo): 1 -+ Aj/Ai ~ Bi,o -~ (A/Aj) )~ G = Gal(Lo/Fo) -+ 1 

and, for any e ~ 0, 

£~,j(L0): 1 -+ Aj/A~ -+ Bi,e -~ (A/Aj) )4 G = Gal(io/Fo) -+ 1. 

WARNING. In order to avoid possible confusion, let us recall that  by [5] ~ we 

mean the projection of [5] into the summand J~ of J. Similarly, [(f] ~ means the 

projection of [5] into the summand J~ of J. 

PROPOSITION 4: 

(1) £i,j (Lo) is solvable if and only if £~,j (L) is solvable. 
(2) £~,j (Lo) is solvable if and only if £~,i (L) is solvable. 

Proo~ Let Lo be a solution to Ci,j(Lo). Then by Proposition 3, L := LoF is a 

solution to £i,j (L). 
Going the other way, let L be a solution to Ew(L ). Kummer theory gives 

correspondences M ~ ~ Lo over Ko, as well as M ~ ++ L and M ¢~ L over K.  By 

Proposition 1 (2), 2~/= M~ and M ~ = M. t for some 5, 7 E K × , with [7] E J~. By 

Lemma 7, we may write [5] = [5] ~ + [5]" • J~ • J~, with e([(f] ~) = e([5]) if [5] • 

Jp-1. Moreover, since [5] p'-j = [7] and J~ is a Fp [G]-submodule, ([5] ~)p~-j = [7]. 

Let 2~/¢ = M~.  Then M ~ C /~/~. By the Kummer correspondence over Ko, 

there exists a field Lo such that  _]~/~ ~ L0 and Lo C Lo. By Lemma 3 and 

Proposition 3,/~o is a solution to Ci,j(Lo). 

The case of g~,j follows analogously. | 

4.2. EMBEDDING PROBLEM CONDITIONS, ARBITRARY FIELDS. To state the 

general result, we alter our notation to let F take the place of Fo. If char F # p, 

then J now denotes K(~p) ×/K(~p) ×P. 

THEOREM 4: Let F be an arbitrary field. 
(1) I f c h a r F  = p, then gi,j(L) and g~,j(L) are solvable. 
(2) I f c h a r F  ¢ p, let 7 E F(~p) x satisfy K(~p) = F(~p) (~) ,  and set T = 1 

if ~p E N~(~p)/F(~p)(K(~p) ×) and T = 0 otherwise. Then 
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(a) gi,j (L) is solvable if  and only i f  [7] = [w] °~-j in J for some w • 
×. 

(b) g~,j ( L ) , i > j + 1 - T or j = p -  1, is solvable if  and only i f  [7] = [w] oF -j 

in J for some w E K(~p) x. 

(c) ~j+I,j(L), T = O, is solvable if  and only it'[7 ] = [~p]e[w]P'-J in J for 

some w • K((p)  x and e ~ 0 rood p. 

Proof: If cha rF  = p, then by Witt 's  theorem all central non-split embedding 

problems with kernel Fp are solvable. (See [JLY, Appendix A].) Since Bi,e and 

Bj,o have the same minimal number of generators for all 1 _< i , j  and e, Witt 's  

theorem gives that  Eid (L) and $~,j (L) are solvable. Indeed, one can successively 

solve a chain of suitable central non-split embedding problems with kernel Fp 

leading to solutions of gi,j (L) and E~,j (L). 

If char F ¢ p, then the statements follow from Theorems 2 and 3 using 

Proposition 4. II 

5. P r o o f  of  Main  T h e o r e m  

Proof: Observe that  $i = 8~,1. The equivalence of (1) and (2) follows from 

Theorem 4. 

Now assume that char F ~ p. By Proposition 4, $~,x (L) is solvable if and only 

if g~,l (L(~p)) is solvable. The condition on b implies that Mb ~ L(~p)/K(~p) 

under the Kummer correspondence. To show (3), by Theorem 2 we need only 

show that there exists a E K(~p) × with [b] = [a] p'-I if and only if there exists 

w with NK(~p)/F(~p)(W ) ---- b. Let N denote NK(~v)/g(~,). 

By equation (2) of Section 2.4, 

[C0] pv-1 : [~d] l+a+ ' ' '+° 'p -1  ~---[CO 1+a+'' '-t-ap-1] : [N@o)] : [b], 

so if w exists satisfying N(w)  = b, then a = w satisfies [b] = [a] p~-I . 

Going the other way, suppose that  [b] = [a] pp-1 for some a. By equation (2) 

again, [b] = [N(a)]. Then N ( a )  = kVb for some k e K(~p) ×. Hence N ( a ) / b  • 

F(~p) x N K(~p) ×p. Let a • K(~p) × satisfy K(~p) = F(~p)(~ra). Then by 

Kummer theory k p = aSf  p for some s • Z. Choosing w = a/ (aS/Pf)  we obtain 

N(w)  = b. 

Finally, the explicit solution of solution fields in the case ~p • F follows 

directly from Theorem 2. | 
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